Quantcast
Channel: Study Rankers
Viewing all articles
Browse latest Browse all 6192

RD Sharma Solutions for Class 10 Chapter 9 Arithmetic Progression Exercise 9.1

$
0
0

RD Sharma Solutions for Class 10 Maths Chapter 9 Arithmetic Progression Exercise 9.1

RD Sharma Solutions for Class 10 Maths Chapter 9 Arithmetic Progression Exercise 9.1

1. Write the first terms of each of the following sequences whose n th term are 

(i) an = 3n + 2
(ii) an = (n - 2)/3
(iii) an = 3n
(iv) an = (3n - 2)/5
(v) an = (-1)n2n
(vi) an = n(n - 2)/2
(vii) an = n2 - n + 1
(viii) an = n2 - n + 1
(ix) an = (2n - 3)/6

Solution

(i) an = 3n + 2
Let n = 1, 2, 3, 4, 5, then
First five terms, a1 = 3×1 + 2 = 3+2 = 5
a2 = 3×2 + 2 = 6+2 = 8
a3 = 3×3 + 2 = 9+2 = 11
a4 = 3×4 + 2 = 12+2 = 14
a5 = 3×5 + 2 = 15+2 = 17


(iii) an = 3n
Let n = 1, 2, 3, 4, 5, then
a1 = 31 = 3
a2 = 32 = 3×3 = 9
a3 = 33 = 3×3×3 = 27
a4 = 34 = 3×3×3×3 = 81
a5 = 35 = 3×3×3×3×3 = 243


2. Find the indicated terms in each of the following sequences whose nth terms are:
(i) an = 5n - 4; a12 and a15
(ii) an = (3n - 2)/(4n + 5); a7 and a8
(iii) an = n(n-1)(n-2); a5 and a8
(iv) an = (n - 1)(2 - n)(3 + n); a11 a21 a3
(v) an = (-1)n n; a3 , a5 , a8

Solution



3. Find the next five terms of each of the following sequences given by: 
(i) a1 = 1, an = an - 1 + 2, n ≥ 2 
(ii) a1 = a2 = 2 , an = an - 1 - 3, n > 2 
(iii) a1 = -1, an = (an - 1 )/n , n ≥ 2 
(iv) a1 = 4, an = 4 an - 1 + 3, n > 1

Solution

Viewing all articles
Browse latest Browse all 6192

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>